2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)

Temporal Weighting of Clinical Events in
Electronic Health Records for Pharmacovigilance

Jing Zhao
Department of Computer and Systems Sciences (DSV)
Stockholm University
Stockholm, Sweden
Email: jingzhao@dsv.su.se

Abstract—Electronic health records (EHRs) have recently
been identified as a potentially valuable source for monitoring
adverse drug events (ADEs). However, ADEs are heavily under-
reported in EHRs. Using machine learning algorithms to auto-
matically detect patients that should have had ADEs reported
in their health records is an efficient and effective solution.
One of the challenges to that end is how to take into account
temporality when using clinical events, which are time stamped
in EHRs, as features for machine learning algorithms to exploit.
Previous research on this topic suggests that representing EHR
data as a bag of temporally weighted clinical events is promising;
however, how to assign weights in an optimal manner remains
unexplored. In this study, nine different temporal weighting
strategies are proposed and evaluated using data extracted from
a Swedish EHR database, where the predictive performance of
models constructed with the random forest learning algorithm is
compared. Moreover, variable importance is analyzed to obtain
a deeper understanding as to why a certain weighting strategy
is favored over another, as well as which clinical events undergo
the biggest changes in importance with the various weighting
strategies. The results show that the choice of weighting strategy
has a significant impact on the predictive performance for ADE
detection, and that the best choice of weighting strategy depends
on the target ADE and, specifically, on its dose-dependency.

I. INTRODUCTION

Adverse drug events (ADEs), or drug side effects, are
often defined as undesired harms resulting from the use of
a drug and cause approximately 2.4% to 12.0% of hospital
admissions worldwide [1]-[3]. As a result, they are considered
to constitute a major public health problem. Every year, many
drugs are withdrawn from the market due to their severe,
hitherto unknown ADEs. Examples include Vioxx for its
doubled risk of causing myocardial infarction [4] and Cerivas-
tatin for causing fatal rhabdomyolysis [5]. Moreover, most
ADEzs, in particular those that are not dose-dependent, result
from inappropriate prescriptions of drugs and are therefore
preventable [6]. Pharmacovigilance is a research area that aims
to improve drug safety, pre- and post-marketing, primarily
using resources such as clinical trials, spontaneous reports
and longitudinal healthcare databases [7]. However, due to the
limitations of clinical trials, in terms of number of participants
and follow-up time, and of spontaneous reports, in terms of
reporting rate and reliability [8], electronic health records
(EHRs) have recently emerged as a potentially valuable source
for pharmacovigilance [9]-[11].

Electronic health records have several advantages over tra-
ditional sources of information for drug safety surveillance: (1)
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they contain longitudinal healthcare data over a long time pe-
riod across a large population; (2) EHR data provides a holistic
perspective of patient health history, including diagnoses, drug
admissions, laboratory tests, etc.; and (3) this data is more
reliable since it is reported by clinical professionals in the real
clinical setting. Nevertheless, ADEs are still under-reported
in EHRs [12]. Manually screening millions of health records
to identify ADEs is practically impossible for the massive
amounts of data archived in an EHR database. To mitigate
this problem, supervised machine learning can be adopted to
automatically detect the presence of an ADE in health records
in which it was not but should have been reported [13]-[19]. To
that end, predictive models are trained to detect health records
that contain ADEs with clinical events — i.e., diagnoses, drugs,
clinical measurements, etc. — as features. These clinical events
are reported in a chronological order in EHRs and the same
event often appears in the same health record several times at
different time points. How to handle the temporality of clinical
events in the context of using supervised machine learning for
ADE detection remains a challenge.

Supervised machine learning algorithms learn from fea-
tures or predictors that describe training examples in order
to find patterns that can distinguish examples that belong
to different classes. If clinical events in EHRs are used as
distinct features, an important task is then to represent these
chronological events in a way that temporality is taken into
account in a manner that leads to the best possible predictive
performance. In a previous study, which focuses on represen-
tations of clinical events, two methods that handle temporality
of clinical events in EHRs were proposed and evaluated [20],
where the first one treats the same event that occurred at
different time points as different features and the second one
assigns different weights to the same event that occurred at
different time points and then aggregates them. The former
creates additional features according to temporality, i.e., each
unique event is transformed into multiple bins that cover a
certain time period relative to time distance from the target
ADE; the latter, instead, injects temporality into the calculation
of feature values. It was shown that both methods lead to better
predictive performance than simply ignoring the temporality —
by modeling the data as a bag of (unweighted) clinical events
— and that the second method yields the best results in general.
However, only a single weighting strategy was considered
in that study and no alternatives were evaluated that would
suggest that the chosen one is the most optimal.

This study aims to explore various temporal weighting



strategies and their impact on the performance of predictive
models for ADE detection in EHRs. Figure 1 illustrates how
weighted clinical events can be extracted from EHRs, which
will subsequently be used as features by supervised machine
learning algorithms; an example of a health record spanning
three days and comprising three different types of clinical
events (drug, diagnosis and measurement) is shown. To study
this problem thoroughly, nine different weighting strategies are
proposed in this study, and they are evaluated by experimenting
on several ADEs with corresponding health records that are
extracted from a real Swedish EHR database. The use case is to
distinguish health records in which an ADE has been reported
from health records in which a similar diagnosis code — but
one that does not indicate that it has been caused by drugs —
has been assigned.
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Fig. 1. Extract weighted clinical events from electronic health records

II. METHODS AND MATERIALS

Here, the nine proposed temporal weighting strategies,
along with their underlying assumption, are first introduced.
To evaluate their impact on predictive performance, a series
of experiments are designed using random forest as the super-
vised machine learning algorithm and conducted on fourteen
datasets, corresponding to fourteen ADEs, that are extracted
from Stockholm EPR Corpus, a Swedish EHR database. For
each patient, a health record of 90 days before the target ADE
is analyzed. To assess the predictive performance of random
forest models using different temporal weighting strategies,
area under ROC curve is used as the main performance
evaluation metric. Finally, variable importance is analyzed in
order to gain more evidence on which clinical events are
influenced most by the choice of weighting strategy.

A. Temporal weighting Strategies

In this study, a temporal weighting strategy follows the
following form: for a clinical event that occurred n days
prior to the occurrence of an ADE, weight w is assigned
according to a curve function f(n). The common underlying
assumption for these nine strategies is that events that occurred
closer to the target ADE are more important, in terms of their
informativeness in the predictive models, and should therefore
receive more weight than those that occurred a longer time
before the target ADE. Therefore, events that occurred in the
same day as the target ADE receive a weight of 1, the highest
weight, and then the weight decreases monotonically with
increasing number of days between the corresponding event
and the target ADE; since the patient history is limited to
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90 days' in this study, the weight for events that occurred 91
days, and more, before the target ADE is O (note that one day is
added here to make sure that events on the 90th day receive low
but non-zero weights); all assigned weights are between 0 and
1. In such a situation, the nine temporal weighting strategies
differ in the speed in which weights decrease along the patient
history, as illustrated in Figure 2. In this figure, wl to w9
are shown from left to right, ordered by the strength of each
strategy, where the impact of strategies to the left is stronger,
i.e., the weights drop quicker, than the ones to the right.
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Fig. 2. Nine weighting strategies following nine curve functions

In wl — w4, each weighting strategy is relatively harsh
in a way that the weight starts from 1 on day O and then
immediately decreases sharply within a number of days (varies
across different strategies), which indicates that clinical events
that occurred a few days before the target ADE are assumed
to be much more relevant than earlier events.

e wl follows an exponential function of n:

wl = exp(—n)
e w2 follows a reciprocal function of n:
1

n+1

e w3 also follows an exponential function of n, but
much softer than w1l:

w2 =

w3 = exp(—0.1 x n)
e w4 follows a second degree polynomial function of n:
_01)2
4o (n—091)
912

In w5, the weighting strategy assumes that the importance
of a clinical event is directly proportional to the number of
days between it and the target ADE.

e w5 follows a linear function of n:

n
wH=1——
91

In w6 — w9, each weighting strategy is relatively soft
compared to wl — wb, where the weight starts from 1 on

1"90 days" was chosen arbitrarily with common sense, i.e., the drugs or
other clinical events that occurred more than 3 months before the occurrence
of an ADE were considered with no significant contribution.



day O but it only decreases softly until a number of days
(varies across strategies) before the beginning of patient history
— 90 days in this case — and then decreases towards 0 quickly.
Such strategies indicate that clinical events that occurred much
earlier than the target ADE are also relevant indicators, though
not as much as the immediate events.

e w6 follows a second degree polynomial function of n,
asymmetrical to w4:

n2

6=1— —
v 912

e w7 follows a transformed exponential function of n,
asymmetrical to w3:

w7 =1—exp(0.1 x (n —91))

e w8 follows a transformed reciprocal function of n,
asymmetrical to w2:
1
91 —n

e w9 follows a transformed exponential function of n,
asymmetrical to wl:

w8 =1—

w9 =1—exp(n —91)

B. Data Source

In this study, 14 datasets were extracted from a real EHR
system — the Stockholm EPR Corpus® [21]. This database
contains health records from around 700,000 patients over
two years (2009-2010), which were collected from Karolinska
University Hospital in Stockholm, Sweden. Various types of
information are available in this database for each patient,
including 10,000 unique diagnoses (encoded by ICD-10°),
1,500 unique drugs (encoded by ATC?), 730 unique clinical
measurements and millions of clinical notes in free-text. Here,
we only used the structured information, i.e., diagnoses, drugs
and clinical measurements.

An earlier study [22] has categorized ICD-10 diagnosis
codes in terms of how they are used for indicating ADEs
during hospital admissions, among which category A.l (a
drug-related causation was noted in the diagnosis code) and
category A.2 (a drug- or other substance-related causation was
noted in the diagnosis code) indicate a clear sign of ADE
occurrence; hence the most frequent A.1 and A.2 ADE-related
diagnosis codes in the Stockholm EPR Corpus were selected.
In total, 14 datasets were created with the existence of an ADE-
related diagnosis code as the class label in each dataset. The
task here is to detect patients who should, but do not, have a
specific ADE reported in their health records, which results in
a binary classification task.

Examples — positive examples were patients whom have
been assigned an ADE-specific diagnosis code and negative
examples were patients whom have been assigned a similar

2This research has been approved by the Regional Ethical Review Board
in Stockholm (permission number 2012/834-31/5).

3The 10th revision of the International Statistical Classification of Diseases
and Related Health Problems

4 Anatomical Therapeutic Chemical Classification System
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code (defined as two codes sharing the same first three levels
of the ICD-10 concept hierarchy) to the corresponding ADE-
related one. For instance, if the positive examples were patients
diagnosed with G44.4 (drug-induced headache), the negative
examples were patients diagnosed with any code starting with
G44 (other headache syndromes), but not G44.4.

Features — unique clinical events including diagnoses,
drugs and clinical measurements, that occurred 90 days before
the occurrence of the target ADE were used as features.
According to the findings from an earlier study on representing
clinical events in EHRs [13], for each example, the value for
each clinical event (feature) was the total number of times that
it occurred in the patient history up to 90 days. The occurrence
of each unique event at different time point was weighted
according to one of the weighting strategies and then these
weighted occurrences were summed up to obtain the “weighted
number of times”, as illustrated in Figure 1.

All datasets in this study are of high dimensionality and
sparsity due to the fact that most clinical events only occurred
to a small group of patients, i.e., the vast majority of the
examples for a given feature have a value of zero. Therefore,
features that are more sparse than 99%, i.e., the ones for
which non-zero values were observed in fewer than 1% of
the examples, were removed; for those datasets with fewer
than one hundred observations, features with only one non-
zero value were also removed. The motivation for this is two-
fold: (1) to reduce the dimensionality and sparsity; (2) to
highlight the impact of applying different weighting strategies.
The former is intuitive; the latter is motivated by the fact that
for features with only one or very few non-zero values, the
impact of applying different weighting strategies is almost neg-
ligible, even though some of these features might be valuable
indicators. To be more specific, if a feature has only one or a
few non-zero values, when using it as an indicator to classify
the examples, it does not matter whether these small numbers
of non-zero values are weighted or not since they will most
likely be distinguished against all the zero values; as a result, a
weighting strategy will almost have no impact on the predictive
performance. Table I lists basic descriptions of each dataset,
including the diagnosis code that indicates the corresponding
ADE (dataset name), the description of this code, the number
of positive and negative examples, the number of features and
amount of sparsity (from both the original datasets and the
reduced ones).

C. Experimental Setup

In this study, two consecutive experiments were conducted
to evaluate the proposed temporal weighting strategies in terms
of their impact on predictive performance when detecting
ADEs. In the first experiment, nine weighting strategies — w1l
to w9 — were applied to the clinical events that were sorted
chronologically in each patient’s health record to generate the
corresponding features in each dataset, which were then fitted
by the random forest algorithm [23] to generate predictive
models. Random forest was chosen mainly for its reputation
of being robust in terms of achieving high accuracy, its ability
to handle high-dimensional data efficiently, as well as the
possibility of obtaining estimates of variable importance. This
algorithm is an ensemble classifier, which constructs a set of
decision trees together voting for what class label to assign to



TABLE 1.

DATASETS DESCRIPTION

No. of Examples No. of Features Sparsity (%)

Dataset Corresponding diagnosis code description Positive  Negative Original Reduced Original Reduced
D642 Secondary sideroblastic anemia due to drugs and toxins 113 4234 3970 381 99.33 94.33
G240 Drug-induced dystonia 16 44 408 408 97.91 97.91
G444 Drug-induced headache, not elsewhere classified 31 1102 1370 103 99.42 94.48
G620 Drug-induced polyneuropathy 19 367 1444 223 99.05 95.62
1952 Hypotension due to drugs 38 480 1538 366 98.53 94.78
L270 Generalized skin eruption due to drugs and medicaments 174 291 1305 268 98.77 95.34
L271 Localized skin eruption due to drugs and medicaments 58 407 1311 266 98.78 95.33
0355 Maternal care for (suspected) damage to fetus by drugs 334 373 628 130 98.90 95.63
T782 Adverse effects: anaphylactic shock, unspecified 136 1467 1383 107 99.47 94.85
T783 Adverse effects: angioneurotic oedema 147 1448 1383 110 99.47 94.95
T784 Adverse effects: allergy, unspecified 984 612 1379 110 99.46 94.95
T808 Other complications following infusion, transfusion and therapeutic injection 353 59 1268 325 97.86 92.79
T886 Anaphylactic shock due to correct drug or medicament properly administered 53 607 2123 322 98.98 94.66
T887 Unspecified adverse effect of drug or medicament 472 271 2129 324 98.97 94.66

an example to be classified. Each tree in the forest is built from
a bootstrap replicate of the original instances, and a subset of
all features is randomly sampled at each node when building
the tree, in both cases to increase diversity among the trees.
With increasing number of trees in the forest, the probability
that a majority of trees makes an error decreases, given that
the trees perform better than random and that the errors are
made independently. The algorithm has often been shown in
practice to result in state-of-the-art predictive performance,
though this condition can only be guaranteed in theory. In
this study, random forest was implemented with 500 trees.

The generated predictive models were evaluated via strat-
ified 5-fold cross validation with 10 iterations. The primary
performance evaluation metric was area under the ROC curve
(AUC), which depicts the performance of a model without
regard to class distribution or error costs by estimating the
probability that a model ranks a randomly chosen positive
example ahead of a negative one. AUC is preferred here
due to the unbalanced class distribution in each dataset, to
which AUC is not biased towards. Other commonly used
performance metrics — accuracy, precision, recall, Fj-score
and area under the precision-recall curve (AUPRC) — were
also reported in this study to evaluate the results from various
perspectives. Accuracy calculates the percentage of examples
that are correctly classified. Precision measures the fraction
of true positives among all the predicted positives, while
recall, also known as sensitivity, measures the fraction of true
positives among all the positives in the reference standard. In
the case of detecting ADEs, high precision means that the
algorithm is able to detect more true ADEs than false ones,
while high recall indicates the capacity of detecting most true
ADE:s. Fi-score is the harmonic mean of precision and recall
by calculating 2 x (precision x recall) /(precision +recall).
Only both a high precision and a high recall can yield a high
F;-score. At last, AUPRC depicts the probability that precision
is higher than recall for each recall threshold.

The Friedman test [24] was employed for statistical testing
of the null hypothesis that all models perform equally, i.e., that
the choice of weighting strategy has no impact on the predic-
tive performance. The nine proposed weighting strategies were
not only compared to each other, but also to a baseline strategy,
w0, where no weighting is involved.

e w0 assigns every clinical event a weight of 1:

w0 =1,Vn
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In a follow-up experiment, variable importance generated
from the random forest models using the best and worst
weighting strategy, as observed in the previous experiment,
was analyzed to obtain a deeper understanding of the differ-
ences between them. Variable importance can be estimated in
different ways, see, e.g., [23]. In this study, Gini importance
[25] was used as the variable importance metric, where a high
Gini importance indicates that a variable plays a greater role in
splitting the data into the defined classes. A Gini importance
of zero means that a variable is considered useless or is
never selected to build any tree in the forest. Here, variable
importance was analyzed on two levels: (1) global level —
ranking the difference in features’ Gini importance in general;
(2) local level — specific features whose Gini importance rank
changes most dramatically between the two chosen strategies.

III.  RESULTS

To compare the predictive performance of random for-
est models using different weighting strategies, they were
ranked based on the chosen performance evaluation metrics,
respectively, for each dataset. The averaged ranks of each
weighting strategy over 14 datasets are presented in Table II
(note that the ranks here range from 1 to 10 given there are
10 weighting strategies to compare and higher ranks indicate
worse performance), from which we can see that w2 yields the
best results with all metrics, while the baseline, w0, is the worst
with five out of six metrics. The impact of different weighting
strategies on the predictive performance is significant with all
metrics but recall.

TABLE II. AVERAGED RANKS OF PREDICTIVE PERFORMANCE FROM
RANDOM FOREST MODELS USING DIFFERENT WEIGHTING STRATEGIES.
(NUMBER IN BOLD INDICATES THE BEST AND ASTERISK THE WORST)

Strategy ~ Accuracy AUC AUPRC Precision Recall ~ Fj-score
wl 6.96 7.14 4.57 5.28 5.53 5.93
w2 3.14 3.86 329 3.96 4.11 3.43
w3 3.82 4.64 4.00 4.25 4.57 4.00
w4 5.64 4.92 6.42 5.68 5.61 5.82
wb 5.46 5.71 5.71 5.17 5.64 5.68
w6 5.29 4.14 5.21 5.14 5.17 4.79
w7 4.82 4.93 5.64 5.18 5.64 5.54
w8 5.46 4.57 5.57 5.68 575 5.96
w9 7.25" 7.14 7.00 721 6.11 6.36
w0 7.14 7.93* 7.57" 7.43 6.86" 7.50"

P-value 0.002 0.001 0.004 0.020 0.395 0.009

Adverse drug events differ from each other in terms of
dose-dependency, i.e., the negative effect of a drug depends on
levels of exposure after a certain exposure time, which, in fact,
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has a direct connection with the choice of weighting strategy.
Intuitively, for ADEs that are highly dose-dependent, clinical
events that occurred a while ago should not be much less
important than the more immediate events; for the ones that
are not dose-dependent, however, only the immediate events
are important contributors. Figure 3 shows the AUC scores that
are obtained from random forest models using all weighting
strategies (w1l — w0) for each dataset (ADE), respectively.
For some ADEs, such as L27], it is obvious that a harsher
weighting strategy yields better AUC, while for D642 the result
is completely the opposite, with almost no weighting yielding
the best result.

In the second experiment — variable importance analysis —
the observed best strategy from the previous experiment, w2,
was compared to the worst, w0 (no weights assigned). Features
were ranked according to their Gini importance and the rank
difference of each feature between w2 and w0 was calculated.
In Table III, the results of the global level analysis is shown,
which include, for each dataset, the number of features that
are higher ranked in models using w2 and w0, respectively,
and the average (absolute) rank difference of all features. On
the one hand, some datasets have more features ranked higher
in w2, while some in w0, and the number of features on each
side is fairly close to each other; compared to total number
of features in each dataset, almost all features are ranked
differently between these two weighting strategies’. On the
other hand, the average rank difference, to some extent, reflects
the predictive performance difference between models using
w2 and w0 (see Figure 3), i.e., higher average rank difference
corresponds to bigger difference in predictive performance.

SNote that the total number of features that are ranked differently in the two
weighting strategies is sometimes larger than the total number of (reduced)
features shown in Table I. This is because that the total number of features
is averaged over 5-fold cross validation, while in the variable importance
analysis, all features that are ranked differently from each fold are counted.
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TABLE III. GLOBAL LEVEL VARIABLE IMPORTANCE ANALYSIS

Higher ranked in Average
Dataset w2 w0 rank difference
D642 214 209 19.66
G240 48 44 6.85
G444 59 68 9.17
G620 134 123 15.40
1952 206 192 21.37
1270 139 162 11.77
L271 158 146 17.90
0355 73 68 7.22
T782 66 62 8.01
T783 59 70 597
T784 65 66 6.51
T808 184 194 16.93
T886 203 193 24.96
T887 193 200 18.82

In the local level variable importance analysis, features
were ranked according to their rank differences between mod-
els using w2 and w0, and the top 5 highest ranked features for
each dataset are listed in Table IV. Note that these features are
not necessarily the most informative / important, but the ones
whose importance changes the most dramatically between w2
and w0. Among the listed clinical events, some are relevant
indicators of the corresponding ADE, while others seem to
constitute random noise. Here, a few examples (made bold
in Table IV) are picked to illustrate how such results can be
understood. Symptoms like dizziness and abdominal pain are
often immediate effects that indicate the presence of an ADE;
therefore they are more informative when only the ones that
occurred close to the target ADE are considered important in
the model. Clinical events such as type 1 and type 2 diabetes
are typically ranked higher in models using w0, since they are
chronic diseases and thus their impact over time should be
more or less constant. All allergy-related features are ranked
higher in models using w0, which indicates that such features
are more informative when the model does not assign lower
weights to them even if they occurred a while ago. This makes



sense as we know that, in fact, a patient’s allergy information
should be an important indicator, even though the reporting
time was a while ago.

TABLE IV. LOCAL LEVEL VARIABLE IMPORTANCE ANALYSIS.
FEATURE NAME (RANK DIFFERENCE). POSITIVE RANK DIFFERENCE
INDICATES FEATURE RANKED HIGHER IN W2, NEGATIVE W0

Dataset ~ Top 5 features ranked most differently between w0 and w2
Ostomy, liquid amount (136)

Dizziness and vertigo (134)

Atrial fibrillation and atrial flutter, unspecified (-101)
Unspecified malignant tumor of the pancreas (-97)
Leg ulcers, not elsewhere classified (89)

Tramadol (-25)

Docusate sodium and e.g. sorbitol or glycerol (24)
Rivaroxaban (22)

Swallowing difficulties (-21)

P-Glucose (-21)

Asthma, unspecified (-41)

Cyanocobalamin (-39)

Counseling, unspecified (34)

Sodium picosulfate (34)

Observation for suspected diseases and conditions (-29)
Felodipine (95)

Atrial fibrillation and atrial flutter, unspecified (79)
Counseling, unspecified (60)

Unspecified malignant tumor in the mammary gland (58)
Presence of electronic cardiac device (58)
Adjustment and management of cardiac device (-169)
U volume in 24h (-133)

midazolam (117)

Pain or aches, unspecified (-111)

Ordinary salt combinations (99)

Thrombocytopenia, unspecified (-68)

Head circumference (54)

Granisetron (-49)

Walking ability, according to Downton (48)

Allergic urticaria (-47)

Dermatitis, unspecified (-118)

Targeted health check regarding atopic disease (-97)
Counseling, unspecified (90)

Allergy, unspecified (-81)

Observation for suspected diseases and conditions (-73)
Type 1 diabetes mellitus before pregnancy (-41)
Person with feared disease in which no diagnosis (-40)
nitrofurantoin (-34)

Supervision of other normal pregnancy (-29)

Body temperature (-27)

Urticaria, unspecified (-44)

FEVI (-37)

Patch test Birch (26)

Cow’s milk allergy (-23)

Prick test: timothy (23)

Constipation (37)

Ketobemidon (-20)

Macrogol, combinations (-20)

B-CRP (19)

Prick test: horse (19)

Dermatitis caused by ingested food (-33)

Karbamid (-27)

Prick test: timothy (-24)

Renewal of recipes (23)

FEVI (-22)

Magnesium oxide (96)

Amoxicillin and enzyme inhibitor (92)

Iopromide (85)

Dextropropoxyphene (79)

Fentanyl, combinations (78)

Pneumonia, unspecified (159)

Abdominal pain (134)

Local anesthetics, combinations (120)

Secondary malignant tumor of the lymph nodes (-113)
Residual (-106)

Type 2 diabetes mellitus (-93)

Other specified counseling (-91)

Carbamide (-90)

Flucloxacillin (78)

Urination frequency (77)

D642

G240

G444

G620

1952

L270

L271

0355

T783

T784

T808

T886

T887

380

IV. DISCUSSION

In longitudinal healthcare databases, such as EHRs, clinical
events are often time stamped. Temporal information is valu-
able when making use of such sources for pharmacovigilance.
On the other hand, it is also challenging to take into account
the temporality if we would like to fit such data into super-
vised machine learning models for ADE detection. This study
investigated this problem from the angle of how to embed
temporality into feature representations that can be used by
predictive models and, particularly, how to assign weights to
clinical events that occurred at different time points.

Here, nine temporal weighting strategies were proposed
and evaluated, where the weights are assigned according to
the temporal relationship between clinical events and the target
ADE following different curve functions. These weighted
clinical events are then summed for each unique event as
features to be used by the random forest learning algorithm
to detect patient health records that have recorded ADEs.
The predictive performance — AUC scores of 0.7 to 0.9 for
most datasets — demonstrates the effectiveness of the applied
method. By comparing the weighting strategies to the baseline,
it is clear that assigning temporal weights to clinical events
leads to better predictive performance than no weighting at all;
among the nine strategies, the one that follows a reciprocal
function, w2, yields the best result. This entails that events
that occurred a long time before the target ADE receive very
low weights, i.e., their existence should only be taken into
account to a limited extent, compared to events that occurred
in close proximity to the ADE. Furthermore, given the poor
performance of models using wl, which is a very harsh
weighting strategy, in the way that weights reduce sharply
immediately after one or two days before the target ADE,
we can conclude that events in close temporal proximity to
the target ADE should not take such a strong precedence over
earlier events (see Figure 2 for relationships between different
weighting strategies).

For each ADE that was investigated in this study, the
best weighting strategy is not always the same. For instance,
D642 (drug induced anemia) favors the very mild strategy,
with almost no weighting, which indicates that to detect
such an ADE, historical clinical events of a patient are very
important indicators; for ADEs like L271 (drug induced skin
eruptions) or 0355 (drug induced damage to fetus), on the
other hand, the harsher strategies, which only consider events
close to the target ADE to be important, result in better
predictive performance. This is not particularly surprising, as
when patient history is used for detecting ADEs, their dose-
dependency is a very important component in the decision-
making. Similarly, in a real-life setting, physicians will ask
about their patients’ recent clinical activities if they suffer from
a dose-independent ADE, but they will want to know what
happened for, e.g., the last three months if they suspect dose-
dependent ones. However, the dose-dependency of an ADE is
not always obvious; therefore it is still interesting to find out
which weighting strategy should be adopted in such a situation.

To gain a deeper understanding on the impact of different
weighting strategies, variable importance, obtained from the
random forest learning algorithm using the best strategy (w2)
and the baseline (w0), also the worst, was analyzed. Among
events whose importance changes dramatically between these



two weighting strategies, there are also some seemingly irrel-
evant ones; therefore, domain experts are perhaps still needed
to filter out some of the irrelevant events if we ought to use
such methods for prediction tasks in a real clinical setting.

One limitation of this study is that weights are pre-assigned
to all clinical events and not obtained through learning from the
data, which consequently limits the precision of the weighting
strategy and also disallows a tailor-made weighting strategy
for each ADE. Moreover, in this study, weights are assumed
to decrease monotonically, albeit at different speeds, along
the patient history, which seems rather reasonable; however,
alternatives have not been explored. For instance, a third degree
polynomial function could be an alternative here. This is also
related to the previous point that such pre-assigned weights are
limited in capturing specific characteristics of each feature. For
future work, it would be interesting to explore how to learn the
weights from data, instead of pre-assigning weights. Another
limitation of this study is that everything that occurred within
90 days of patient history is included in the predictive model,
which at the same time introduces a risk of noise; the results,
especially from the variable importance analysis, would be
more precise and relevant if a clinical expert filtered out some
obviously irrelevant events prior to the learning process.

V. CONCLUSION

This study tackles the problem of making the best use
of time stamped clinical events in electronic health records
by means of supervised machine learning for detecting the
presence of a particular adverse drug event in patient health
records. Particularly, the focus here is on how to assign weights
to these events in accordance with their temporal relationships
to the target adverse drug event. It is concluded that the choice
of weighting strategy has a significant impact on the predictive
performance, and that the dose-dependency of an adverse drug
event should be taken into account in the decision-making.
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